IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Graduate Theses and Dissertations .)
Dissertations

2009

Measurement of PVFES2 performance on

InfiniBand

Sudhindra Prasad Tirupati Nagaraj
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Tirupati Nagaraj, Sudhindra Prasad, "Measurement of PVFS2 performance on InfiniBand" (2009). Graduate Theses and Dissertations.
12246.
https://lib.dr.iastate.edu/etd/12246

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12246?utm_source=lib.dr.iastate.edu%2Fetd%2F12246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

M easurement of PVFS2 performance on InfiniBand

by

Sudhindra Prasad Tirupati Nagar aj

A thesis submitted to the graduate faculty
in partial fulfilment of requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Brett Bode, Cavajor Professor
Robyn R. Lutz, Co-Major Professor
Soma Chaudhuri

lowa State University
Ames, lowa
2009

Copyright © Sudhindra Prasad Tirupati Nagaraj, 2009. All rights reserved.

www.manharaa.com

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES
ACKNOWLEDGEMENTS
ABSTRACT

CHAPTER 1. INTRODUCTION

CHAPTER 2. BACKGROUND
2.1 InfiniBand Architecture
2.2 Parallel Virtual File System (PVFS)
2.2.1 PVFS/InfiniBand
2.3 MPI I/O
2.4 IOR Parallel /0 Benchmarking Tool
2.5 Overall 1/0 path used for benchmarking

CHAPTER 3. SYSTEM CONFIGURATION
3.1 Hardware configuration
3.2 Software configuration

CHAPTER 4. BENCHMARKING METHODOLOGY
4.1 Outline of the methodology used
4.2 Experimental Setup
4.3 Test Strategy

CHAPTER 5. BENCHMARKING RESULTS
5.1 Graph description
5.2 Results
5.3 Analysis of the Results

CHAPTER 6. CONCLUSION
CHAPTER 7. FUTURE WORK
BIBLIOGRAPHY

APPENDIX
Makefile changes
IOR.c changes
aiori.h changes
aiori-PVFS2.c
benchmark script
perfquery/vmstat script

vii

=

© ~ 01 01

www.manaraa.com

LIST OF FIGURES

Figure 1. OpenlB software stack 6
Figure 2. PVFS2 architecture 8
Figure 3. PVFS2/InfiniBand 9
Figure 4. 1/0O path 12
Figure 5. ibmcluster in Ames Lab 14
Figure 6. 2-client write bandwidth performance 20
Figure 7. 2-client read bandwidth performance 20
Figure 8. 4-client write bandwidth performance 21
Figure 9. 4-client read bandwidth performance 21
Figure 10. 6-client write bandwidth performance 22
Figure 11. 6-client read bandwidth performance 22
Figure 12. MPI I/O write bandwidth comparison 30

www.manharaa.com

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

LIST OF TABLES

Hardware configuration of test system

Software configuration of test system

Standard deviation for writes on 6 clients
Standard deviation for reads on 6 clients

Context Switch counts across interfaces for writes
Mean CPU time

13
15
23
24
27
28

www.manharaa.com

ACKNOWLEDGEMENTS

The work was supported in part by lowa State University undecahgact DE-

AC02-07CH11358 with the U.S. Department of Energy.

| would like to take this opportunity to express my deep felt tgigei and thanks
to those who were instrumental in helping me with my researchhaendriting of my
thesis. Without their support, | would not have been successful imdeaeor. To start
with, 1 would like to thank Dr. Brett Bode for his outstanding support anft¢éeeom he
offered me to pursue my research. His patience and insistaxedrtspired me a lot to
complete my thesis. Without his favorable support, | would not have beentcable
complete my thesis early enough. | would like to thank the contributioroy
Benjegerdes who gave valuable inputs towards my thesis and helpedcarsiantly
troubleshooting and resolving the ever-failing hardware infrasteigturAmes Lab. |
would like to thank Dr. Robyn R. Lutz for her kind encouragement and tiageiges to
help me in writing my thesis. Her smiling support and heeaech experience motivated
me to great heights. Her course on Software Safety helped mestamdethe intricacies

of writing a research article.

I would like to thank my committee member Dr. Soma Chaudhuri &r h
encouragement. Her gentle guidance and the course on Distributedthigolli took
with her provided me a solid foundation for the way research is conduietiso. would
like to thank the Ames Lab staff for providing me a good reseamglronment to work

in.

www.manaraa.com

Vi

On a personal level, | am grateful to Dr. Kasthurirangan Gé&pahnan for his
constant suggestions to help me align my research focus. | am th&mkdandeep
Krishnan, Ankit Agrawal and Ganesh Ram Santhanam for helping miting my
thesis. | am most grateful to my parents Mr. T. S. NagarajMmsd Sarala Nagaraj and

my sister Ms. Deepti for their love and moral support all through my graduatesstudi

www.manharaa.com

Vil

ABSTRACT

InfiniBand is becoming increasingly popular as a fast interconteetinology
between servers and storage. It has far better price/performaticeompared to both
Gigabit Ethernet and 10 Gigabit Ethernet, and hence is being simgBaused for high-
performance computing applications. PVFS2, the second generatiorelPéiralial File
System (PVFES), is a distributed file system for paratlata access that is being
increasingly used in clustered applications. As previous studiesshaven, in general,
PVFS2 over InfiniBand offers enhanced 1/O rates compared to P\Ww& TCP and
Gigabit Ethernet. Apart from the hardware technology, the applicgirogramming
interface into the file system also makes a difference. Toejetr parallel performance,
the choice of a file system interface is important. Our sisitly benchmark and compare
the performance of PVFS2 running over InfiniBand using differensfigem interfaces.
IOR is a popular I/O benchmarking tool that supports the POSDM#H/O file system
interfaces. In addition to testing these already supported icéstfave have written a
PVES2 module extension for IOR to support native PVFS2 interfacethmtPVFS2 file
system. As we shall see in this study, using native PVFSH#aogeoffers significant
performance benefit compared to other file system interfacdbe PVFS2 file system.
Our benchmarking effort also involves studying the effect wiudti-client environment
on the 1/O performance of different file system interfacessell on the benchmarking
results we obtain, we determine the most efficient applicatiorraaroging interface for

parallel /0O on PVFS2 in a typical multi-client paralleppéication scenario.

www.manaraa.com

CHAPTER 1. INTRODUCTION

As the size of data grows exponentially [15], there is a neesefwing the data
more efficiently in a cost-effective way. This is espegi&ilie of scientific applications
that work with terabytes, or even petabytes, of data and henceaneadivanced file
system to allow for efficient storage and retrieval of datgarallel file system like
PVFS addresses the issue of facilitating efficient data psoug by the high-
performance computing (HPC) applications. PVFS allows for paratieess to data
striped across multiple file servers. Thus, parallel applicatiwhgre concurrent, large
I/O and many file access are common [2], benefit from theahyc distribution of I/O
data and metadata on a PVFS file system. We are now intetbad generation of
PVES file system, referred to from here on as PVFS2. The P¥¢kéhts communicate
with the PVFS2 servers over various interconnect technologies. orediyi, Gigabit
Ethernet was the popular interconnect technology for PVFS clisréfssommunication.
With InfiniBand [1] offering high data bandwidth rates, it is fasplacing Gigabit
Ethernet as the client/server interconnect technology. In addifoniBand has better
price/performance ratio. For example, a 24-port DDR switchnger $5000, that is
$200/port, whereas a 10 Gigabit Ethernet costs about $400/port, say #a Afagig
switch, thus offering only half the bandwidth. We therefore chosaiB#nd for our
benchmarking purposes because of its high potential impact on the @foparallel

scientific applications.

Currently, as far as we know, there has not been much effoenichmarking of

PVFS2 on the InfiniBand interconnect. There has been no effdre toest knowledge to

www.manaraa.com

study deeply the effect of file system interfaces iV&®2/InfiniBand environment for a
multiple client parallel 1/0O scenario. The tools that allomdtenarking of parallel 1/0
with different APIs into PVFS2 either do not allow for effecttesting of a multi-client
environment, or do not support all the APIs for an effective analysigu.kt al. [7] offer
a I/0 performance comparison of PVFS between InfiniBand andIP@@mmunication
protocols. They only analyze the impact of different number of canpades on the 1/0
bandwidth rates, and their study was not aimed at comparingffdet of different file
system interfaces into the PVFS file system. Also, theythesoriginal PVFS version,
and not the second generation PVFS (PVFS2) which offers better performanstudihe
of L. Chai et al. [8] aims to compare pNFS and PVFS2 I/O pedoaain an InfiniBand
cluster environment. Their study shows the I/O performance imprewveas compared
to a Gigabit Ethernet implementation. However, their work doestady she effect of
different file system interfaces into the PVFS2 file systélso, they do not study the
effect of different 1/0O transaction unit sizes on the I/O qnance. Furthermore, their
study does not use IOR as the benchmarking tool that is mostlsddatesting multiple

client parallel I/O pattern that is most typical of parallel appboet

In order to explore the single tool that allows us to test réiffiefile system
interfaces in a multi-client environment, we looked at differemichmarking options.
IOZone [9] is one popular I/0O benchmarking tool, but it is more igesalited for single
client throughput experiments. Another tool b_eff io [10] examinet irde, rewrite
and read access, strided and segmented collective patterns ore @ee &pplication and

non-collective access to one file per process. But it supporysMBl 1/O interface.

www.manaraa.com

Furthermore, it does not capture the parallel /O patterns nypstal in parallel

applications.

IOR is a parallel 1/0O microbenchmark that is suited for nalient experiments.
It also allows the characterization of the 1/O pattern mgst&y in parallel applications.
In addition, it supports different file system interfaces, includ@SIX and MPI 1/O.
IOR does not support native PVFS2 interface into the PVFS2 Stersythough. Hence,
we wrote a PVFS2 module extension for IOR. Thus we now have le $oaj that can
give us all the necessary statistics required to benchmarkPdfir$ifiniBand as per our

requirements.

The first key contribution of this thesis is to extend native PV&igort to the
IOR benchmarking tool for performing 1/O into a PVFS2 file system. Weusetteat this
support can help one use the advantages offered by IOR in ¢énpesforming multi-
client benchmarking, along with other features like computing mean dfandard
deviation of reads and writes over multiple runs, performing non-overlamaralel
sequential 1/0O on a single file by multiple clients etc., antha same time benchmark
native PVFS2 interface 1/0O performance more effectively ammarison to other

interfaces using the same tool.

The second key contribution is to benchmark the 1/0O bandwidths offered by
different file system interfaces into the PVFS2 file gsystever the InfiniBand
client/server interconnect using the IOR tool. This study incluegg the performance
of POSIX, MPI I/O over PVFS, MPI I/O over POSIX and nativeA32 interfaces into

the PVFS2 file system. We also test with different numb&\#S2 clients and different

www.manaraa.com

I/O message sizes and capture the results. We analyzpetf@mance results so
obtained from IOR to try to identify the factors determining itiéerence in

performance of reads and writes.

The rest of the thesis is structured in the following way. Chapnovides the
background information on InfiniBand, PVFS, MPI I/O and IOR. Chapter 3 gsvi
information on the test bed used for our benchmarking effort. It thlkstahe hardware
and software configurations used while running our benchmark. Chapteriresutie
benchmarking methodology we used. Chapter 5 consists of the performesutes
obtained from IOR, a demonstration of the advantages of using native2Hniegace
and an analysis of the results. Chapter 6 talks about the conchrsd Chapter 7 about

the future work.

www.manaraa.com

CHAPTER 2. BACKGROUND

In this chapter, we discuss the background of InfiniBand, Pandlialal File

System (PVFS), MPI I/O and the IOR 1/O benchmarking tool.

2.1 InfiniBand Architecture

The InfiniBand architecture (IBA) [1] provides a point-to-point linking
technology used as a base for an I/O fabric that aims to s&ctba aggregate data rate
between servers and the storage devices. In our implementagomisev InfiniBand
technology to interconnect the PVFS2 clients (the processing nadds)he PVFS2
servers (the 1/0 nodes), where the clients send I/O requesteiais respond to the 1/10
requests via InfiniBand interfaces. PVFS2 has support for the lafiBietwork fabric
between the clients and the servers. The PVFS2 clients send fey&&sts using the
native InfiniBand protocol stack by bypassing the traditional TEprotocol stack since
the InfiniBand protocol allows client/server communication via RDRemote Direct
Memory Access). In order to deploy the InfiniBand hardware asoramunication
medium between clients and servers, the clients and the serverhaneigshe necessary
software to enable InfiniBand access. OpeniIB [14] is an opewrea@oftware stack
developed by the OpenFabrics Alliance (OFA) that enables comcation on a RDMA-
capable fabric like InfiniBand. Following figure (Figure 1) shalws OpenlIB protocol
stack used for RDMA data transfers over InfiniBand. It shows RIMR-based
application bypassing the TCP/IP stack to talk to the harddiagetly. In an OpeniB
implementation, the RDMA application uses the OpenIB Verbs ARHeruser-space to

communicate to the InfiniBand hardware. OpenIB then copies the fdata the

www.manaraa.com

application memory to the hardware directly to perf RDMA to the remot

application.

L —

User spac

Kernel bypas

IB interconnect

Storage

IB switch

Figure 1. OpenlB software stack

www.manharaa.com

2.2 Parallel Virtual File System (PVFS)

PVFS is a parallel file system that supports high performdf@ of the kind
typical in High Performance Computing (HPC) clusters. The pyirgaal of PVFS is to
provide high-speed access to file data for parallel applicatignBYF-S is a client-server
file system, with potentially multiple servers and clients.SEhgervers act as 1/0 nodes,
responsible for serving data, while the clients demand data fresetrvers. One or more
nodes can act as metadata servers, responsible for metadat#oonpdike open, close
and remove operations (refer Figure 2). There need not be dedicat&ll deArers,
clients and metadata servers. The same node can act as @l thmegh for better
performances, typically deployments have dedicated nodes astieghar 1/0 nodes,
metadata node or clients. In the PVFS file system, each RWHS striped across the
disks on the PVFS servers. PVFS is a user-space implemerttaioneeds no kernel
modifications. PVFS is an upper layer parallel file systerh g¢ha on top of traditional
native file systems like ext2, ext3, xfs etc.. So actual fita d&ll resides on the native
file system. The second generation PVFS (PVFS2) retains #ignddé the original
version, and also provides additional advantages of higher performancbetiad

metadata managements.

2.2.1 PVFS/InfiniBand

PVES supports the InfiniBand interface between the clients andsdnveugh a
Buffered Messaging Interface (BMI) implementation for Infiai8l that uses either
Mellanox VAPI or OpenlIB APIs (see Figure 3). Since we uted OpeniIB software

stack in our test setup, PVFS builds over the OpenIB verbs layesstablish

www.manaraa.com

communication between the clients and servers via the IB charMES Reads and
writes happen via RDMA (Remote Direct Memory Access) opmratibetween the
clients and the servers, thus allowing the data transfer pasbythe TCP/IP stack.
However, there is an OpenlB component called IPoIB which allows IB congation to

happen over TCP/IP, but its discussion is beyond the scope ohdsis.tin order to

enable IB support with PVFS, we must build PVFS specifically for IB support.

PVFS2 PVFS2 PVFS2 PVFS2
Client Client Client Client
e ey -, ; __.»-""'f .

-\\ : -

IBinterconnect =
= [‘I“"
e

|II . T

- ™ T—
- e

-~) —

eta data

server
| I I
RAIDS RAID S RAIDS RAIDS

Figure2. PVFS2 architecture

www.manharaa.com

Application
PVFES2 client — PVFS2 server binary
~ L
User-level interface = > Buffer Manager File access
x Manager
System interface L Communication Managel
— Ll
Buffer Manager - n PVFS transport layer
. ®)
Communication Managef

PVFES transport layer
OpeniB API ¢ OpeniB API

Figure 3. PVFS2/InfiniBand

2.3 MPI1 1/O

MPI 1/0O [12] is a standard application programming interfaceptanallel 1/0
defined by the MPI Forum. MPI I/O provides for concurrent /0O s€d¢e a single file by
many processes. The parallelism attained thus enhancesathang write performances
significantly with multiple processes performing I/O on a fiteparallel, instead of a
single process I/0O. Since we are testing the effect ofipfeulPVFS2 clients on the
read/write performance of PVFS2, MPI I/O becomes a naturacehior achieving
concurrent 1/0. The benchmarking tool we have chosen, IOR, supports Rhé/
interface into the PVFS2 file system. MPI I/O is a prosg®s&hronization layer and uses

underlying 1/O function like PVFS2 I/0O or Unix (POSIX) I/O perform the actual file

www.manaraa.com

10

system 1/O [4]. Since the specific choice of the 1/0 functiondmasnpact on the overall
MPI 1/O performance, the tests in this paper cover both MPI li@uBOSIX and MPI

I/O using PVFS2 stacks for analyzing the I/O performance.

ROMIO [5] is one of the main implementations of MPI I/O that paesgi high-
performance and portability. We used the MPICH2 package that indR@BEO as the
MPI I/O implementation on our test systems. ROMIO provides #&pler MPI 1/0
implementation through the use of an internal abstract /0O dewieedalled ADIO. The
ADIO layer interfaces between MPI I/0O and the underlyitgy $iystem, in our case the
PVFS2 file system [6]. ROMIO can be used on top of PVFS2sfiieem through 2
mechanisms. The first mechanism is where ROMIO interfacteghe POSIX compliant
VFS layer to access the PVFS2 file system. In this da&8vilO is ignorant of the
underlying PVFS2 file system. The second mechanism is wherel@Qises PVFS2
interfaces directly, instead of POSIX semantics. In thig,cROMIO needs to be built
with PVFS2 support. In this paper we test with both ROMIO on VFS @MIR on

PVFS2.

2.4 IOR Parallel 1/O0 Benchmarking Tool

IOR (Interleaved or Random) [13] is used for testing paralkelsfystems using
various interfaces and access patterns. It is particulartyfoseesting the sequential 1/0
pattern typical in parallel applications. IOR is especiallyfulsir testing a multiple
client parallel I/O environment. IOR needs MPI software toniséalled on all the client
nodes to achieve process synchronization between multiple cBsatsg 1/O in parallel.

IOR allows configuration of 1/O in terms of the transferes(size of each I/O transfer

www.manaraa.com

11

unit used by the client), block size (size of the total chunk ofwlatien by each client),
number of clients, number of iterations (number of times the sastastrun to get a
more accurate average /O performance value), the type ofacgefMPIIO, POSIX)

among others. IOR also allows the user to specify whetheti#imtscshould write to the
same file or different files, one per client. In our setup, allcllents write to the same

file hosted on a PVFS2 file system.

2.5 Overall 1/0 path used for benchmarking

The following figure shows the I/O path as the reads and varegssued by IOR
on the PVFS2 client nodes. The MPI I/O calls go through the ROMIO ingettfbare, the
MPI 1/O calls can either go via the PVFS2 library (MROD lising PVFS) or via the
Kernel VFS layer (MPI 1/0 using POSIX). The calls that\ga the Kernel VFS layer
follow the POSIX semantics, wherein the applications issue PQ@8IIX to the PVFS2
file system mounted as a traditional Unix File System on lieatcnodes. The native
PVFS2 and POSIX calls bypass the ROMIO interface. /@ tiatough the kernel VFS
layer go to a user-space pvfs2-client process (running on eanhmmbde) that converts
the calls into low level system interface calls to commueid¢a the pvfs2-server. In
contrast, /O calls via PVFS2 library go via tiepvfs library which converts the native
PVFES calls again into low-level system interface callsoteefcommunicating to the
pvfs2-server. In both cases, the PVFS2 software uses RDMA for commainicativeen
the PVFS2 clients and servers. To use RDMA, PVFS2 uses thdBDgerbs API. The
OpeniB layer sits on top of the InfiniBand hardware, acting astanface between

PVFS2 and the underlying InfiniBand hardware.

www.manaraa.com

-
Native PVFS2
calls

MPI I/O using
PVFS2

12

T

POSIX calls

> MPI I/O using
POSIX

Figure4. 1/0 path

www.manharaa.com

13

CHAPTER 3. SYSTEM CONFIGURATION

3.1 Hardware configuration

The following table shows the hardware configuration of the testeclgsalled
“ibmcluster” at the Scalable Computing Lab, Ames Laboratory, épartment of
Energy. The cluster is a non-homogeneous cluster consisting of fil @Meron nodes
and one Intel Xeon node. The nodes are connected to each other anddmties disks
by InfiniBand channels via 2 InfiniBand switches. All the nodesshfeacommon root file
system provided by Andrew File System (AFS). The AFS volueseles on a shared

disk.

Table 1. Hardware configuration of test system

Main Memory 4 GB RAM
Processor AMD Opteron node — Dual processor, 2.4
GHz

Intel Xeon node — Dual processor, 2 GHz

Host Channel Adapter card Mellanox 4X DDR PCI-Express InfiniBand adapte

(16 Gbps)
Storage disks hosting the PVFS2 500 GB partition for each node on a 8 disk RAID
file system Set of Seagate SATA HDs
RAID controller for each storage 2 Areca PCI-X SATA RAID controllers (only one
node is used for 1/0)
Client/Server Interconnect 2 Mellanox 24 port (4X SDR/DDR) switches

connected with a 12X DDR interlink (48 Gbps max
data payload)

www.manaraa.com

14

AMD Opteron

AN
AMD Opteron .

Mellanox 4X
DDR HCA
12X DDR

- L] 3}

—

Intel Xeon

500 GB

Figure5. ibmcluster in AmesLab

www.manharaa.com

15

3.2 Software configuration

Each node in the PVFS cluster has the following software installed on it:

Table2. Software configuration of test system

Operating system Debian GNU/Linux 4.0
PVFS2 version 2.7.1
MP1 1/O software MVAPICH2 1.2
OpenlB version OFED 1.3
IOR version 2.10.2

For running PVFS2 with InfiniBand, the PVFS2 sources have to be compiled with
InfiniBand support. Before compiling PVFS2 with IB, OpenlB museady have been
installed in the test systems. PVFS2 binaries link with OpdifiEries to perform
RDMA over the IB fabric. For multiple clients to perform paghlfO using IOR, an mpd
ring must be setup in the cluster. The mpd ring essentially temdig® group of mpd
daemons, each of which is running on a node in the PVFS2 cluster. The mapglibi
shipped as part of the MVAPICH2 bundle. To create the mpd ring, wiae@Sspdboot”
utility. A hostfile listing the names of all the nodes beingduss PVFS2 clients is
provided as an argument to the mpdboot utility. A run of the “mpdtradéy wiill then
list all the client nodes that form the mpd ring. Furthermore, &R needs to be built
with MVAPICH2. This is done by setting the PATH environment \@eato the
directory where MVAPICH2 binaries are located, and running the fillekin order for
IOR to use the POSIX and MPI I/O using POSIX file systatarfaces, the PVFS2 file
system must be mounted as a Unix file system on the cliesttings. The PVFS2 kernel

module [2] allows mounting the PVFS2 file system as a traditional Unixystes.

www.manaraa.com

16

CHAPTER 4. BENCHMARKING METHODOLOGY

4.1 Outline of the methodology used

In the test setup, the PVFS2 clients communicate with the PV&S@rs using
the InfiniBand protocol stack, bypassing the TCP/IP stack. dd/\ngite data from/to the
PVFS2 servers, applications can use different types of filemsystterfaces, including
POSIX and MPI 1/O. As already mentioned, IOR is a popular bendimgatool for
testing parallel filesystems using different interfacess kspecially used for analyzing
multiple client performance doing parallel I/O on a sirfidée Since our experiments aim
to test multiple client I/O performance on PVFS2, we chosetido our benchmarking
of PVFS2 on InfiniBand. Presently, IOR only supports MPI I/0 an&IRJile system
interfaces. We wrote a PVFS2 extension module for IOR to inchadze PVFS2
support for IOR. This allows IOR to read/write data into the PXK® system using
native PVFS2 interfaces. We analyze these different interfagerunning IOR with
different I/O message size used for reading or writing PV&&a to and from PVFS2
servers, and different number of PVFS2 clients. This allows dsteymine the optimum
message sizes for different interfaces that would give theinmiax read/write
performance. We finally make observations on the benchmarkingtisego obtained to
determine the best file system interface in terms of offegood read/write bandwidths

for application data.

www.manaraa.com

17
4.2 Experimental Setup

Our test ring consists of 6 servers that double up as both PVFS2ssandce
clients. To test PVFS2 with multiple clients, we configuréxad set of 6 PVFS2 I/O
servers and 6 PVFS2 metadata servers. We then vary the nunibéF 82 clients (2, 4

and 6) and run the IOR benchmark.

4.3 Test Strategy

The IOR benchmarking tool uses the sequential access patteneésuring the
read and write bandwidths. In the world of HPC applications, sequéi@igdatterns
dominate among other access patterns [11]. Using IOR, the PViIES® alrite data to a
single file in parallel, using independent I/O. The differenesypf I/O access vary from
serial (all I/0O happens via a single processor), multi-filalpe (each processor does 1/0
to a separate file) to single-file parallel 1/O (multiplegessors do I/O to a single file in
parallel). The limitation of serial 1/O is that it leads gerformance bottleneck since all
I/O gets routed through a single processor. Also, since theokihe file to be written
might exceed the memory capacities of the single proce#Sacahnot take advantage of
memory buffers. Similarly, multi-file /O approach has probleaasociated with piecing
together multiple files into a single file, high metadata osachand the inherent
difficulty in measuring I/O performance. Due to these linotad, single file parallel /0
is the most popular choice in the parallel-programming parafligin We assumed the
total file size written to by the PVFS clients to be 24 GBisTile size was so chosen to
offset any impact of buffering either on the client size dghatl/O servers. Each node in

our PVFES cluster has a RAM of 4 GB. Since each node acts aslienthand server, we

www.manaraa.com

18

assumed a total file size of (6 PVFS servers/clients) * 4=GB4 GB. This file size
assures us that the I/O is actually hitting the disk, allonangife measurement of I/O
performance more accurately. Since the access is sequantiadach client has its own
chunk of file data, it does not make sense to test with collectiVe For each
configuration, we test with multiple message sizes, and see thewread/write
performance is affected. The size of I/O transactions useHR®y applications vary
across KB to tens of MB. We run our tests on message sizeslfrivifa to 1 GB to
capture the effect of message size on read/write perfornmance effectively, and to
determine the optimum message size for peak I/0O performancessiviet the message
size at 1 GB since the peak read/write performance iseddutfore this. We test to see
if the ROMIO interface into the PVFS2 file system has ampact on the I/O
performance. To this end, we test with MPI 1/O using POStXrfaces into the PVFS2

file system, and MPI I/O using native PVFS interfaces into the PVFSg&yBlem.

www.manaraa.com

19

CHAPTER 5. BENCHMARKING RESULTS

5.1 Graph description

The results are shown as line graphs plotted with the readtaitdwidth (in
Megabytes per second units) against the I/O message sized@abiytes). The maximum
read/write bandwidth is fixed at 800 MB on the y-axis of each grapis makes
performance comparison easier across different measurer@ntthe x-axis of each
graph, we consider message sizes of 1 MB, 2 MB, 4 MB, 8 MB, 16 MB,B2%KI MB,

128 MB, 256 MB, 512 MB and 1 GB. Each graph shows plotted lines pertaming t
POSIX, MPI I/O using POSIX, MPI I/O using PVFS and natix&B interfaces. There
are different sets of graphs for different client numbers. Togepl lines have different
colors and plot points to differentiate between themselves. Figufeshow 2 client read
and write bandwidths, figures 8-9 show 4 client read and write bandvadthdigures
10-11 show 6 client read and write bandwidths. For plotting the graphs & us

Microsoft Excel software.

5.2 Results

Following are the results captured by our testing:

www.manaraa.com

20

2 PVFS2 clients
__ 800
[S)
2 700
@ 600
2
= 500
T 400 - —o—POSIX
H
T 300 ~—MPI I/O using POSIX
@& 200
2 100 ~—MPI I/O using PVFS
R o —=Native PVFS2
— o < 0 (e} o < o] Vo] o~ <
— o™ (e} (o] N — (o]
— (o] wn o
—
Message Size (MB)
Figure 6. 2-client write bandwidth performance
2 PVFS2 clients
__ 800
[S)
2 700
@ 600
2
= 500 -
T 400 —¢— POSIX
3
T 300 1 ~—MPI I/O using POSIX
@ 200
- === MPI |/O using PVFS
e 100
-3 0 : : : : : : : : : : =>é=Native PVFS2
— o < [ee] (e} o < 0 Vo) o <
— o (o) (o] n — (o]
— o n o
—
Message Size (MB)

Figure7. 2-client read bandwidth performance

www.manharaa.com

21

T T T T
- N < o0 O <
— Vo]

T T T 1
o 0 Yo} o <
on o n — N
— (V] n o
i
Message Size (MB)

4 PVFS2 clients
__ 800
(8]
2 700
& 600
2
= 500
T 400 =—¢— POSIX
H
S 300 - ~@—MPI 1/O using POSIX
8 200 .
2 100 === MPI I/O using PVFS
s 0 . =>Native PVFS2
— (qV] < o0} (Vo) o < [oe] Vo) o <
— o (o] o wn i o
i o wn o
i
Message Size (MB)
Figure 8. 4-client write bandwidth performance
4 PVFS2 clients
__ 800
[S)
2 700
o 600
2
= 500 -
T 400 —=¢— POSIX
H
T 300 ~—MPI 1/0 using POSIX
8 200 .
= === MPI I/O using PVFS
& 100
(-3 0 : : == Native PVFS2

Figure9. 4-client read bandwidth performance

www.manharaa.com

22

T T T T T
- N < 0 O N <
- on O

6 PVFS2 clients
__ 800
[8)
2 700
& 600
2
T 500
3 400 —4—POSIX
3
T 300 4 ——MP!I I/O using POSIX
& 200 .
2 100 == MPI I/O using PVFS
z 9 . =>&=Native PVFS2
- N < 00 O N & 0 O N <
- o (o) o~ wn — (o]
— (g\] wn o
—
Message Size (MB)
Figure 10. 6-client write bandwidth performance
6 PVFS2 clients
__ 800
(8]
2 700
N
[=2] Séa
D 600
= 500 -
T 400 ——POSIX
2
T 300 —&—MPI 1/0 using POSIX
& 200 .
o === MPI /O using PVFS
e 100
[0 : : : : : =>&= Native PVFS2
0 O N <
(g\] n — (o]
— (o] n o
—
Message Size (MB)

Figure11. 6-client read bandwidth performance

www.manharaa.com

23

The following tables (Table 3 and Table 4) show the standard deviationefasuring read and
write bandwidth over 3 runs, on each of the file system intestaEor writes, the standard
deviation is very less, on the order of 12 MB/sec, indicating thatahdwidth rates are reliable
and predictable. For the reads, the standard deviation is a bit mpeziadly for the native

PVFES interface (this may be because we captured the error margirtbefteginal results were

obtained. This may have resulted in a changed system configuration).

Table3. Standard deviation for writeson 6 clients

Interface Message size Write Bandwidth (MB/sec) Standard

(MB) Run #1 Run #2 Run #3 | deviation(MB/sec)

64 451.35 465.42 471.82 8.38

128 457.54 456.89 469.66 4.03

MPI I/O 256 460.02 469.66 466.36 3.74

over PVFS 512 462.33 470.13 470.54 3.77

64 706.23 709.44 681.15 12.55

128 690.59 695.74 680.59 6.24

MPI1 1/0 256 730.58 720.03 735.02 6.24

over POSIX 512 663.73 670.02 659.32 4.55

64 364.25 349.77 353.24 6.34

128 358.79 353.94 349.54 3.68

POSIX 256 362.94 355.84 350.75 4.92

512 358.62 352.85 345.17 5.31

64 644.06 637.42 666.94 12.35

128 695.91 698.15 699.77 1.69

Native 256 705.05 700.30 697.49 3.30

PVFS2 512 666.61 661.91 659.51 2.94

www.manaraa.com

24

Table4. Standard deviation for reads on 6 clients

Interface Message size Read Bandwidth (MB/sec) Standard
(MB) Run #1 Run #2 Run #3 | deviation(MB/sec)
64 563.30 533.44 532.41 14.38
128 528.72 564.82 556.91 15.40
MPI1 1/0O 256 548.57 572.47 549.41 11.08
over PVFS 512 613.42 561.32 554.86 26.31
64 373.69 394.46 400.27 11.57
128 414.00 408.85 393.68 8.83
MPI I/O 256 349.07 357.95 363.91 5.73
over POSIX 512 353.18 339.45 363.10 9.84
64 348.52 332.72 335.04 6.94
128 344.18 340.34 333.52 4.54
POSIX 256 345.40 337.05 338.29 3.56
512 367.60 359.02 346.35 8.65
64 543.10 520.77 518.14 11.34
128 605.16 496.51 480.10 55.53
Native 256 575.90 473.70 482.42 46.10
PVFS2 512 542.04 478.41 462.71 34.5

5.3 Analysis of the Results

As can be seen in the above results, as far as read perforimaoceerned, for

small message sizes, the low-level interface of MPld/@he PVFS file system does not

seem to make a difference. Performance is comparablebatthMPI 1/0O over POSIX

and MPI I/O over native PVFS2. As the size of the message=ases, the performance

of MPI 1/O using PVFS starts to improve significantly compatedViPl I/O using

POSIX. With 6 PVFS clients, MPI I/O using PVFS hits a pesddrbandwidth of ~614

MB/sec at a message size of 512MB. However, MPI I/O using®PP&ks out at ~469

MB/sec at a message size of 16 MB; for bigger message gzeead performance is

considerably lower. When IOR uses native PVFS2 interfaces, thepeséormance is

mostly similar to the read performance of MPI I/O using PVIF® all client numbers,

www.manaraa.com

25

the read performance of MPI I/O over PVFS and native PVYE&lanost always similar.
With 6 PVFS clients, the native PVFS interface gives a pea#t performance of ~606
MB/sec for a message size of 128 MB. The worst read pernfmenig obtained using
POSIX interface into the PVFS2 file system. It gives a peakl performance of only

~368 MB/sec for a message size of 512 MB and with 6 PVFS clients.

However, as far as the write performances are concerned, KdPbJer the
POSIX layer offers significantly better performance cormagato MPI 1/O over the
PVFES2 layer. The difference in the write performance betweenlitferent MPI I/O
stacks becomes bigger and bigger as the number of PVFS2 clieetssesr Also, for
bigger message sizes, the gap between the write bandwidths dets M#P1 1/0 over
PVFS offers a peak write bandwidth of ~370 MB/sec with 6 PVFShtsliand a
message size of 16 MB. In contrast, MPI I/O using POSIXreffepeak bandwidth of
~731 MB/sec, almost double the write bandwidth, for a messagefs2s% MB. Native
PVFS2 write performance almost exactly matches the peittormance of MPI I/O over
POSIX. It offers a peak write performance of ~706 MB/seafsimilar message size of

256 MB.

The performance difference between native PVFS2 and POSIXaurgsr is
because reads and writes in native PVFS2 happen through theaseres the client
side when the data is transferred to the pvfs2-server. In thexP@&dlel, reads and
writes get copied from the user-space to the kernel space ekdrba kernel space to
the user-space before the data gets transmitted to the pvis2-dHence native PVFS2

calls perform better in terms of reads and writes.

www.manaraa.com

26

The performance difference between MPI 1/O over PVFS and NKOPlover
POSIX follows a similar theory. The 1/O calls in each of thses is different. As already
discussed in section 2.5, the POSIX semantics use the kernel Y& Swaile the PVFS
calls go via the libpvfs2 library. Since MPI I/O is an abgtoaclayer above POSIX or

PVFS2, the I/O path underneath causes difference in their overall performance.

MPI I/O calls in general suffer from the disadvantages of pobtoecerhead. It
however has support for passing hints, like the stripe size, to theyimgldile system.
We use the default PVFS2 stripe size throughout our tests. Thd@®diplementation
of MPI 1/O is especially optimized for good parallel perfonoaon PVFS. MPI I/O also
has support for pre-fetching data, a feature that POSIX /O leading to a poor
parallel 1/0 performance for POSIX. POSIX I/0O also suffesn drawbacks due to
atomic writes, read-after-write consistency and attrib@ghiness [16]. MPI I/O provides
better metadata management. In a POSIX file model, alitgtieocesses are forced to
open the shared file, causing system call storm, while MPI I/O uses &msdid model
where a single file system handle lookup by a master client rotheoadcasted to
remaining client nodes [17]. Native PVFS has less protocol overheéa)so provides a
much richer API for describing 1/0O accesses, since it isifsgaty made for parallel I/0O.
Also, unlike the POSIX model, it has much lesser metadata ovedoeaoared to MPI
I/O. It matches the non-contiguous regions in memory and file reffestively as
compared to POSIX. Thus it offers superior read/write perioga as our results have

shown.

To understand the write performance between different interfzetésr, we used

the “vmstat” utility to get the virtual memory statistics on the server n&iese we used

www.manaraa.com

27

the same nodes as both clients and servers, it didn't reallyr whitee we ran the vmstat
tool. In particular, we found that the number of context switches betwdterent
interfaces varied significantly. Following are the resulstwaed for writing a 256 MB
message by 6 clients (Table 3). We chose this messagemsiedasge messages result in
the most performance difference compared to small messages.3Tsibws the number
of context switches happened for each interface when performiteswn the PVFS2

file system.

Table5. Context Switch counts acrossinterfacesfor writes

Interface Runl Run2 Run3 Mean Standard Deviatjon
MPI I/O over PVFS | 152176143114| 157768| 151000 6038.12
POSIX 131114 135840| 133521| 134000 1929.49
MPI 1/O over POSIX | 109792103745| 113928 109000 4181.52
Native PVFS 100029 99182 | 102219 100000 1279.62

As seen above, the number of context switches for MPI /O over>P@3éss
compared to MPI I/O over PVFS. This might account for the bettiée performance of
MPI 1/O over POSIX as compared to MPI I/O over PVFES. To understand wicpmtibext
switches are more for MPI I/O over PVFS, we looked at the spent by the CPU in the
user-space and kernel-space while performing I/O, again Usengnstat utility. For 3

runs, following is the mean CPU time with an error margin of less than 2% -

www.manaraa.com

Table6. Mean CPU time

28

1Y

Interface User-space Kernel-space
MPI I/O over PVFS 30% 6%
POSIX 35% 10%
MP1 1/0O over POSIX 40% 12%
Native PVFS 35% 13%

As seen above, the CPU time spent in 1/O for both user-spadesaral-space is

less for MPI 1/0 over PVFS compared to MPI I/0O over POSixce the amount of I/10

is same for both the cases, it seems that CPU is more actively involvedan M®1 1/0

using POSIX as compared to MPI I/O over PVFS, thus achievimgrfeontext switches

since CPU is not handling many non I/O tasks while doing I/O. Irasmtor MPI 1/0O

over PVFS, since the CPU is less involved in I/O, it switchesegtsto perform other

tasks, leading to more context switches. This observation led ygpothksize that the

number of packets generated for MPI I/O over POSIX wabagpsr more and with

smaller packet sizes as compared to MPI I/0O over PVFS. dhistsow seems to lead to

better parallelization and better batching at the server vpeittorming disk 1/0. The

PVFS2 server interfaces to disk using POSIX asynchronous I/Onesutivhich are

implemented via glibc using threads and blocking read/write. 8eei€ is more I/O, it

appears that the I1/O gets batched together better. We believthehiaigher 1B traffic

generated for MPI1 I/O over POSIX compared to MPI I/O dR¥FS leads to a better

write performance for larger message sizes. For lamgssage sizes, MPI /O over

POSIX seems to fragment the application data more leadingithar number of packet

www.manaraa.com

29

traffic on the InfiniBand interconnect. More packets lead to higheallelization of the
packets to the I/O servers, leading to better performance. Ocothiary, the higher
number of IB packets generated for MPI 1/O over POSIX forelargessage sizes leads
to a degraded read performance compared to MPI I/O over PVFS.isThicause,
reading more packets means more overhead for reading tla fdetulata from the file

system.

To test our hypothesis that MPI I/O over POSIX results in nit@epackets
compared to MPI I/O over PVFS, we used the “perfquery” tool. Budid not get any

conclusive evidence.

The “perfquery” tool is part of the OpenIB diagnostics. The perfqtmoly can
guery the host/switch InfiniBand ports to get a measure of the nuofl& packets
transmitted and received through these ports. We used the toolrjoaljuine ports of
both the IB switches used in our setup to compute the IB traffic @exefor one run of
the IOR benchmark tool for a 6 PVFS2 client setup. Basicallygpery will compute
the aggregated sum of the IB packets passing through the 24 pedshobf the two 1B
switches in our test environment. Since the difference in I/@pedance was significant
mostly for the larger message size, IOR was run with aféiasize of 256 MB. The

counts of IB packets were —

MPI 1/0 and PVFS2 - 244,086,007

MPI I/O and POSIX - 244,241,310

Native PVFS2 - 244,126,754

www.manaraa.com

30

POSIX - 244,785,626

But the difference between the packet counts was not signigcanigh to draw

any conclusions. There is a possibility that the tool might adstamn bugs that would

give incorrent results.

In order to test the theory that parallelization helps théewperformance for

higher number of 1/0 packets, we reduced the number of /0O sereens6 to 4 to

decrease the degree of I/0O parallelization. We then ran IGHRRMPVFS2 clients on the

MPI 1/0O over POSIX file system interface. IOR would writle of the same size as

before (24 GB),

but this time on a PVFS2 file system stripeasaaonly 4 1/O servers.

We then compared the results so obtained with the results of M@PbJver PVFS

performance on 4 PVFS2 clients and 6 PVFS2 servers. We obsbatethéir write

bandwidths almost matched each other. Following is the graph of the same —

800
700
600
500
400
300
200
100

Write Bandwidth (MB/sec)

MPI I/O comparison for 4 PVFS2

clients

i ——MPI |/O using POSIX +
| 4 PVFS2 servers

== MPI /O using PVFS + 6
PVFS2 servers

T T T T
— N < 0 O N <
— on O

128 A
256 A
512 ~
1024 -

Message Size (MB)

Figure12. MPI 1/O write bandwidth comparison

www.manaraa.com

31

As seen above,

WriteBandwidth(Loss in the degree of parallelization for MPI ¢\@r POSIX, Higher
number of IB packets) = WriteBandwidth(Higher degree of paizdlgon for MPI 1/O

over PVFS, Lesser number of IB packets).

Native PVFS2 outperforms MPI /O over PVFS2 in terms of egrisince it
involves less redundant buffering in the 1/0O path on account of lesscplaiverhead.
For larger messages, the write performance of MPI I/O BVES gets saturated perhaps
on account of lack of support for transfer of large messages as muwtither words, the
MPI1 1/0O layer could be fragmenting the larger packets, leadingsaimration in
performance. As far as MPI I/O over POSIX is concerned,prdormance benefit
offered perhaps by its higher packet count matches with the regustedol overhead
and support for larger message size of native PVFS2. Hence thiarnpences are
almost similar to each other. We have already discussedntitations of POSIX for
parallel I/O and our results reflect the limitations. In thierent work, we have not been
able to exactly determine the causes leading to the perfoendifferences between
different interfaces. We hope that in our future work, we can esdlet causes more

effectively to explain the performance results and also help improve ti@rpance.

www.manaraa.com

32

CHAPTER 6. CONCLUSION

In this thesis we studied the I/O performance of PVFS2 overnaBand
technology. In particular, we studied the performance of concueadsrand writes by
multiple processes, characterizing the typical parallel 8€ess pattern used in parallel
applications. We examined in detail the effects of different egidn programming
interfaces into the PVFS2 file system by making use of th& Igarallel I/O
microbenchmark. In addition to the POSIX and MPI I/O interfaces stggpby IOR, we
extended its functionality to include a PVFS2 module allowing t® access the PVFS2
file system using native PVFS2 interfaces. To study theceffof different MPI 1/O
stacks on the I/O performance of a PVFS2 file system, we ran our benchmak$/iR 1t
I/0O over POSIX as well as MPI I/O over PVFS environment® &ls0 tested 1/O
performance with different 1/O transfer unit sizes to find et optimum I/O message

size for each configuration.

Our results showed that MPI 1/0 over PVFS fetches better peformance for
large I/O message sizes, while MPI I/O over POSIX fettiedter write performance for
large 1/0 message sizes. We also showed that a native Fkte&ace performs really
well in both reads and writes in a multi-client parallel l&@rsario. With these results, on
the whole we characterize the performance of PVFS2 on theBafidiinterconnect by
achieving impressive 1/0O performance results. By extendingfl®Btionality to include
PVFS2 support, we make available a single parallel /0O ben&mgaiool suitable for
comparing different file system interfaces in multipleeti experiments in a PVFS2
environment. Using this work, parallel applications can configure tl@ienvironment

according to the performance parameters we identified and getl@tperformance.

www.manaraa.com

33

CHAPTER 7. FUTURE WORK

We showed our benchmarking results obtained from the IOR benchmarking tool
Now that we have identified the application programming interfand the 1/O
transaction unit size that will most benefit reads and writes IPVFS2/InfiniBand
environment, the next step is to run a real-world parallel appicawvith these
performance parameters as a case study. A measurenbatl efficiency of such an
application will prove the effectiveness of our analysis in &wead scenario. In this
thesis, we measured PVFS2 performance on native InfiniBand, whdf82P%lients
communicate with PVFS2 servers using native InfiniBand caltealf be worthwhile to
test PVFS2 with clients and servers communicating using tledPIB protocol stack,
wherein the communication happens using the regular TCP/IP stdokroBand as the
physical medium. We are also planning to benchmark 1/0O perform@aneelLustre file
system that is currently being setup on the “ibmcluster” in @A\treb. The goal is to do a
comparative study of PVFS2 I/O performance and Lustre I/@pednce on InfiniBand.
Since this kind of comparative study does not exist as of today toestiknowledge, we
hope that this will give us some interesting insights. Alsay@ have already mentioned,
we hope to analyze the performance of different interfaces eftectively to isolate the
exact causes of performance bottlenecks. Lastly, in the pipsliaeasynchronous 1/O
implementation with NetPipe wherein application I/O overlapgh WVFS2 client/server

I/0. Such an implementation might offer a significantly better pardeperformance.

www.manaraa.com

34

BIBLIOGRAPHY

[1] InfiniBand Trade Associatiornttp://www.infinibandta.com

[2] Parallel Virtual File Systenhttp://www.pvfs.org.

[3] P. H. Carns, W. B. Ligon Ill, R. B. Ross, and R. Thakur. PVFS: A Parallel Fste®@yfor
Linux Clusters. IrProceedings of the 4™ Annual Linux Showcase and Conference, pages 317-

327, Atlanta, GA, 2000. USENIX Association.

[4] Y. Tsujita: Implementation of an MPI I/O Mechanism Using PVFS in RertiGt to a PC
Cluster. InProceedings of the High Performance Computing and Grid in Asia Pacific Region,

7™ International Conference, pages 136-139, 2004. IEEE Computer Society.

[5] ROMIO. http://www-unix.mcs.anl.gov/romio

[6] R. Thakur, W. Gropp, and E. Lusk, An Abstract-Device Interface for Implemenoiriglie
Parallel-I/O Interfaces, iRroc. of the 6th Symposium on the Frontiers of Massively Parallel

Computation, pages 180-187, 1996.

[7] 3. Wu, P. Wyckoff, D. K. Panda: PVFES over InfiniBand: design and performaategon.

In Proceedings of the International Conference on Parallel Processing, pages 125-132, 2003.

[8] L. Chai, X. Ouyang, R. Noronha, D. K. Panda: pNFS/PVFS2 over InfiniBand: early
experiences. IRProceedings of the 2" international workshop on Petascale data storage, pages

5-11, 2007.

[9] lozone Filesystem Benchmattkitp://www.iozone.org

www.manaraa.com

35

[10] Effective /O Bandwidth Benchmark.

http://www.hlrs.de/organization/par/services/models/mpi/b_eff io

[11] H. Shan and J. Shalf: Using IOR to analyze the I/O performance of HE@m& InCray
Users Group Meeting (CUG) 2007, Seattle, Washington, May 7-10, 2007.

[12] Peter Corbett, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam ginBiiexlitzberg,
Bernard Traversat, Parkson Wong, and Dror Feitelgbt:1O: A parallel file /O

interface for MPI, version 0.4http://lovelace.nas.nasa.qgov/MPI-IDecember 1995.

[13] IOR, http://www.lInl.gov/asci/purple/benchmarks/limited/ior

[14] OpenliB, http://www.openib.org

[15] HPC Analytics, Arizona State Universityttp://plato.asu.edu/slides/stanzione.pdf

[16] Clustered and Parallel Storage System Technologies FASTQ9,

http://www.usenix.org/events/fast09/tutorials/T1.pdf

[17] R. Ross: PVFS2 and Parallel /0O on BGAvited talk atThird BG/L Systems Software and
Applications Workshop 2006, Tokyo, Apr 19-20, 2006; see

http://www.cbrc.jp/symposium/bg2006/PDF/Ross.pdf

www.manaraa.com

36

APPENDIX

IOR source changes for PVFS2 support.

Makefile changes

poSix: $(OBJS) aiori-POSIX.0 aiori-noPVFS2.0 aiori- noMPIIO.o \
aiori-noHDF5.0 aiori-noNCMPI.0 \
$(CC) -0 IOR $(0OBJS) \
aiori-POSIX.o aiori-noPVFS2.0 aio ri-noMPI1O.0 \
aiori-noHDF5.0 aiori-noNCMPI.0 \
$(LDFLAGS)
pvfs2: $(OBJS) aiori-PVFS2.0 aiori-POSIX.0 aiori-n oMPIIO.0\
aiori-noHDF5.0 aiori-noNCMPI.0 \
$(CC) -0 IOR $(0OBJIS) \
aiori-PVFS2.0 aiori-POSIX.o aiori- noMPI110.0 \
aiori-noHDF5.0 aiori-noNCMPI.0 \
-I$(PVFS_INCLUDE) $(LDFLAGS) $(PV FS_LDFLAGS) -Ipvfs2
mpiio: $(OBJS) aiori-POSIX.o aiori-PVFS2.0 aiori-M PIIO.0\
aiori-noHDF5.0 aiori-noNCMPI.0 \
$(CC) -g -0 IOR $(OBJS) \
aiori-POSIX.o aiori-PVFS2.0 aiori -MPIIO.0 \

aiori-noHDF5.0 aiori-noNCMPI.0 \

$(LDFLAGS)

www.manharaa.com

37

IOR.c changes

This is the main benchmarking logic that tests file system 1/O.
sudhindra@dal2:/10-tool5/10OR-2.10.2/src/C$ diff IOR.c.PVFSIOR.c.withoutPVFS

187,195d186

<} else if (strcmp(api, "PVFS2") == 0) {

< IOR_Create = |OR_Create_PVFS2;
< IOR_Open = |OR_Open_PVFS2;
< |IOR_Xfer = |IOR_Xfer_PVFS2;

< |IOR_Close = IOR_Close_PVFS2;
< |OR_Delete = IOR_Delete PVFS2;

< |OR_SetVersion =I|0R_SetVersion_PVFS2;
<IOR_Fsync = |OR_Fsync_PVFS2;

< |OR_GetFileSize =I0R_GetFileSize PVFS2;

aiori.h changes

This is the header file containing the definitions and prototypes needed for the

abstract 1/0O interfaces invoked by IOR.

sudhindra@dal2:/10-tools10R-2.10.2/src/C$ diff aiori.h.pvfs aiori.h.withoutPVFS

202,212d201

< I* PVFS2-specific functions */

<void *IOR_Create_PVFS2(char *, IOR_param_t *);

<void *IOR_Open_PVFS2(char *, IOR_param_t *);

< |OR_offset_t IOR_Xfer_ PVFS2(int, void *, IOR_size b,

< IOR_offset_t, IOR_par am_t *);

<void IOR_Close_PVFS2(void *, IOR_param_t *);

www.manaraa.com

38

<void IOR_Delete_ PVFS2(char *, IOR_param_t *);
<void IOR_SetVersion_PVFS2(IOR_param_t *);
<void IOR_Fsync_PVFS2(void *, IOR_param_t*);

< |OR_offset_t IOR_GetFileSize PVFS2(IOR_param_t *, MPI_Comm, char *);

aiori-PVFS2.c

This file contains the implementation of abstract I/O interfaces for RVFS

#include "aiori.h" * abstract IOR interfa ce */
#ifdef _ linux__

include <sys/ioctl.h> /* necessary for: */

define _ USE_GNU /* O_DIRECT and */

include <fcntl.h> /* 10 operations */

undef __USE_GNU

#endif /* _linux__*/

#include <errno.h> /* sys_errlist */

#include <fcntl.h> /* 10 operations */

#include <stdio.h> [* only for fprintf() * /

#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#include <pvfs2.h>
#include <limits.h>
#include <string.h>
#include <sys/time.h>

#include <sys/types.h>

#include <sys/stat.h>

www.manharaa.com

39

#include <time.h>

#include <libgen.h>

#define STRIP_SIZE -1

#define NUM_DATAFILES -1
[riskpmkrririritkD R O T O TY P E Stkvsksini
Jrikimimiorioriririt D E C L AR AT | O N Shtririonk
extern int errno;

extern int rank;

extern int rankOffset;

extern int verbose;

extern MPI_Comm testComm;

int flag = 0;

PVFS_credentials credentials;

PVFS_object_ref ref;

PVFS fs id fs_id;

PrrkrrrrkrririirineekE | N C T | O N Shttbtriritrk
R R KRR AR AR AR IR AR AR Rk
[*
* Create and open a file through the PVFS2 interfa
*/
void make_attribs(PVFS_sys_attr *attr, PVFS_credent

int nr_datafiles, int mode)

attr->owner = credentials->uid,;

attr->group = credentials->gid,;
attr->perms = PVFS_util_translate_mode(mod
attr->atime = time(NULL);

attr->mtime = attr->atime;

*********/

**********/

*********/

*********/

ce.

ials *credentials,

e, 0);

www.manharaa.com

40

attr->ctime = attr->atime;
attr->mask = (PVFS_ATTR_SYS ALL_SETABLE);
attr->dfile_count = nr_datafiles;
if (attr->dfile_count > 0)
{
attr->mask |= PVFS_ATTR_SYS_DFILE_COUN
}
} I* make_attribs */
void *IOR_Create_PVFS2(char *testFileName, IOR_para
{
PVFS_sys_attr attr;
PVFS_permissions perms;
PVFS_sysresp_lookup resp_lookup;
PVFS_sysresp_getattr resp_getattr;
PVFS_sysresp_create resp_create;
PVFS_object_ref parent_ref;
PVFS_sys dist *new_dist;
intret =0;
char pvfs2_path[PVFS_NAME_MAX];
char *entry_name; /* name of th
char str_buf[PVFS_NAME_MAX]; /* basename of th
/* so things like debug files go the right
if ('flag)
{

ret = PVFS_util_init_defaults();

if (ret < 0)

{

ERR("PVFS_util_init_defaults");

m_t *param)

e pvfs2 file */
e pvfs2 fi

place */

le */

www.manharaa.com

41

}

flag = 1;
}
[* Translate path into pvfs2 relative path */
ret = PVFS_util_resolve(testFileName, &fs_i d, pvfs2_path,

PVFS_NAME_MAX);
if (ret < 0)
{
ERR("Unable to map requested name to a pvfs2 file\n");

}

PVFS_util_gen_credentials(&credentials);

entry_name = str_buf;

if (PINT_remove_base_dir(pvfs2_path, str_b uf, PVFS_NAME_MAX))
{
if(pvfs2_path[0] !="/")
{
ERR("Error: poorly formatted pat h.\n");
}
ERR("Error: cannot retrieve entry name for creation");
}
ret = PINT_lookup_parent(pvfs2_path, fs_id , &credentials,
&parent_ref.handle);
if (ret < 0)
{
ERR("PVFS_util_lookup_parent");
}
[*we are always dealing with a dest full p ath with file name */

parent_ref.fs_id = fs_id;

www.manharaa.com

42

memset(&resp_lookup, 0, sizeof(PVFS_sysres p_lookup));

if (lparam->filePerProc && rank != 0)

{
MPI_CHECK(MPI_Barrier(testComm), "barr ier error");
}
ret = PVFS_sys_ref lookup(parent_ref.fs_id, entry_n ame,
par ent_ref, &credentials, &resp_lookup,
PVFS2_LOOKUP_LINK_FOLLOW);
if (ret == 0)
{

/* file exists, open it */

ref = resp_lookup.ref;

else

int nr_datafiles = NUM_DATAFILES;
PVFS_size stripe_size = STRIP_SIZE ;
PVFS_sys_dist *new_dist;
PVFS_sysresp_create resp_create;
PVFS_sys layout layout;

make_attribs(&attr, &credentials, NUM_DATAFILES,
(int)(S_IFREG | S_IRUSR | S_IWUSR));
if (stripe_size > 0)
{
new_dist = PVFS_sys_dist_lookup("simple_stripe");
ret = PVFS_sys_dist_setpara m(new_dist, "strip_size",

&stripe_size);

if (ret < 0)

www.manharaa.com

43

{
ERR("PVFS_sys_dist_setparam"

}
}
else
{

new_dist = NULL;

}

layout.algorithm = PVFS_SYS LAYOUT_

ret = PVFS_sys_create(entry_name,

NONE;

parent_ref, attr,

&credentials, new_dist, &layout,

&resp_create);
if (ret < 0)
{
ERR("PVFS_sys create");
}
ref = resp_create.ref;
}
if (rank == 0)
MPI_CHECK(MPI_Barrier(testComm), "barr
return (void *)fs_id;

} * IOR_Create PVFS2() */

/**
/*

* Open a file through the PVFS2 interface.

*/

void *IOR_Open_PVFS2(char *testFileName, IOR_param_

ier error");

************/

t * param)

www.manharaa.com

44

return((void *)fs_id);
} * IOR_Open_PVFS2() */
JRERE RS A AR AR RS AR RIS AR RE RS A AR R
Jx
* Write or read access to file using the PVFS2 in
*
IOR_offset_t IOR_Xfer_PVFS2(int access,
void *file,
IOR_size_t *bu
IOR_offset_t le

IOR_param_t * pa

char *ptr = (char *)buffer;
intret=0;

PVFS_Request mem_req, file_req;
PVFS_sysresp_io resp_io;

file_req = PVFS_BYTE;

ret = PVFS_Request_contiguous(length, PVFS

if (ret < 0)
{
ERR("PVFS_Request_contiguous");
}
if (access == WRITE)
{

ret = PVFS_sys_write(ref, file_req, pa

ptr, mem_req, &cred

if (ret == 0)

*kkkkhkkkkkkk /

terface.

ffer,
ngth,

ram)

_BYTE, &mem_req);

ram->offset,

entials, &resp_io);

www.manharaa.com

45

{
PVFS_Request_free(&mem_req);
}
else
{
ERR("PVFS_sys_write");
}
}
else
{
ret = PVFS_sys read(ref, file_req, par am->offset,
ptr, mem_req, &c redentials, &resp_io);
if (ret == 0)
{
PVFS_Request_free(&mem_req);
}
else
{
ERR("PVFS_sys read");
}
}
return(length);

} ¥ IOR_Xfer_PVFS2() */
/** ********/
/*

* Perform fsync().

*

void IOR_Fsync_PVFS2(void *fd, IOR_param_t *param)

www.manharaa.com

46

{
} * IOR_Fsync_PVFS2() */
JRERE R R A AR RS AR AR RIS A AR RS AR AR, !
J*
* Close a file through the POSIX interface.
*

void IOR_Close_PVFS2(void *fd, IOR_param_t *param)

{
} I* IOR_Close_PVFS2() */
/** *kkkkk /
/*
* Delete a file through the PVFS2 interface.
*/
void IOR_Delete_ PVFS2(char * testFileName, IOR_para m_t * param)
{

int rc =0, num_segs = 0;

char filename[PVFS_SEGMENT_MAX];
char directory[PVFS_NAME_MAX];
PVFS fs_id cur_fs;
PVFS_sysresp_lookup resp_lookup;
PVFS_object_ref parent_ref;
char pvfs2_path[PVFS_NAME_MAX];
if ('flag)
{

rc = PVFS_util_init_defaults();

if (rc < 0)

www.manharaa.com

47

ERR("PVFS_util_init_defaults");
}
flag = 1;
}
PVFS_util_gen_credentials(&credentials);
[* Translate path into pvfs2 relative path
rc = PVFS_util_resolve(testFileName, &cur_fs
PVFS_NAME_MAX);
if (rc < 0)
{
ERR("PVFS_util_resolve™);
}
// break into file and directory
rc = PINT_get_base_dir(pvfs2_path, directo
if (rc < 0)
{
ERR("PINT_get_base_dir");
}
num_segs = PINT_string_count_segments(test

rc = PINT_get_path_element(testFileName, nu

*

, pvfs2_path,

ry, PVFS_NAME_MAX);

FileName);

m_segs - 1, filename,

PVFS_SEGMENT_MAX);

if (rc)
{
ERR("Unknown file path format™);
}
memset(&resp_lookup, 0, sizeof(PVFS_sysres
rc = PVFS_sys_lookup(cur_fs, directory, &c

&resp_lookup, PVFS2_LO

p_lookup));

redentials,

OKUP_LINK_NO_FOLLOW)

www.manharaa.com

48

if (rc)

ERR("PVFS_util_resolve™);
}
parent_ref = resp_lookup.ref;
rc = PVFS_sys_remove(filename, parent_ref,
if (rc)
{

ERR("Error: An error occurred while re

}
} /¥ IOR_Delete_PVFS2() */

/**
/*
* Determine api version.
*
void IOR_SetVersion_PVFS2(IOR_param_t *test)
{
strcpy(test->apiVersion, test->api);

} I* IOR_SetVersion_PVFS2() */

JRERE R R AR RIS AR RIS A AR RS AR
J*
* Use PVFS2_sys_attr to return aggregate file siz
*/
IOR_offset_t IOR_GetFileSize PVFS2(IOR_param_t *tes
MPI_Comm testComm,

char *testFileName)

&credentials);

moving file");

*********/

*****/

www.manharaa.com

49

IOR_offset_t aggFileSizeFromStat, tmpMin, tm pMax, tmpSum;
intret =0;

PVFS_sys_attr *attr;

PVFS_sysresp_getattr getattr_response;

memset(&getattr_response,0, sizeof(PVFS_sysr esp_getattr));

PVFS_util_gen_credentials(&credentials);

ret = PVFS_sys_getattr(ref, PVFS_ATTR_SYS_AL L_NOHINT,
&credentials, &getattr_respon se);

if (ret < 0)

{

ERR("PVFS_sys_getattr");
}
attr = &getattr_response.attr;
aggFileSizeFromStat = attr->size;
if (test->filePerProc == TRUE)

{
MPI_CHECK(MPI_Allreduce(&aggFileSizeFr omsStat, &mpSum, 1,
MPI_LONG_LONG_INT, MPI_SUM, testComm),
"cannot total data moved");

aggFileSizeFromStat = tmpSum;

else

MPI_CHECK(MPI_Allreduce(&aggFileSizeFromS tat, &mpMin, 1,
MPI_LONG_LONG_INT, MPI_MIN,
testComm),

"cannot total data moved");

MPI_CHECK(MPI_Allreduce(&aggFileSizeFromS tat, &tmpMax, 1,

www.manharaa.com

50

MPI_LONG_LONG_INT, MPI_MAX,
testComm),

"cannot total data moved");

if (tmpMin != tmpMax)

{
if (rank == 0)
{
WARN("inconsistent file size by different tasks");

}

/* incorrect, but now consistent acro ss tasks */
AggFileSizeFromStat = tmpMin;

}

}
return(aggFileSizeFromStat);

} /* IOR_GetFileSize_PVFS2() */

benchmark script

This is the benchmarking script we used to capture the I/O performance of our

experimental setup.

#!/bin/sh

echo "MPI I/O over PVFS"

i=1

size=1024

www.manharaa.com

51

while [$i -It 2]; do

sleep 30

new_size="$size"M

echo "Testing with $new_size"

=0

while [$j -t 5]; do
lusr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \
/IO-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t $new_s ize -b 4G\
-i 5 -0 pvfs2:/mnt/pvfs2/mpiio_pvfs2_krsna
sleep 10
j=expr $j+1°
rm -rf /mnt/pvfs2/*

done

echo "******Run $| ended*******"

i="expr $i + 1

size="expr $size * 2°

done

echo "MPI I/O over POSIX"

i=1

size=1024

www.manharaa.com

52

while [$i -t 2]; do
sleep 30

new_size="$size"M

echo "Testing with $new_size"

=0

while [$j -t 5]; do
lusr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \
/10-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t $new_s
-i 5 -0 /mnt/pvfs2/mpiio_posix_krsna
sleep 10
j=expr $j+1°
rm -rf /mnt/pvfs2/*

done

echo "******Run $| ended*******"

i="expr $i + 1

size="expr $size * 2

done

echo "POSIX"

i=1

size=1024

ize -b 4G\

www.manharaa.com

53

while [$i -It 2]; do

done

sleep 30

new_size="$size"M

echo "Testing with $new_size"

=0

while [$j -It 5]; do
lusr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \
/10-tools/IOR-2.10.2/src/C/IOR -a POSIX -t $new_s
-i 5 -0 /Imnt/pvfs2/posix_krsna
sleep 10
j="expr $j+ 1°
rm -rf /mnt/pvfs2/*

done

echo "******Run $| ended*******"

i="expr $i + 1

size="expr $size * 2

echo "Native PVFS2"

i=1

size=1024

ize -b 4G\

www.manharaa.com

54

sleep 30

new_size="$size"M

echo "Testing with $new_size"

=0

while [$j -It 5]; do
lusr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \
/IO-tools/IOR-2.10.2/src/C/IOR -a PVFS2 -t $new_s ize -b 4G\
-i 5 -0 Imnt/pvfs2/pvfs2_krsna
sleep 10
j="expr $j+ 1°
rm -rf /mnt/pvfs2/*

done

eChO "******Run $| ended*******"

i="expr $i + 1°

size="expr $size * 2

done
perfquery/vmstat script
This is the script we wrote to capture the count of IB traffic for each anerind
to get virtual memory statistics.
#l/bin/sh

reset all counters

www.manharaa.com

55

reset_counters() {
echo "### & reset all counters”
perfquery -r -e -a 4
perfquery -r -e -a 5
perfquery -r -e -a 6
}
function to query port counters
dump_counters() {
echo "### dal2 (lid 8) port on switch 4"
perfquery -e 4 4
echo "### 12XDDR link from switch 4 to switch 5"
perfquery -e 4 22
echo "### 12XDDR link from switch 5 to switch 4"
perfquery -e 5 22
echo "### 12XDDR link from switch 5 to switch 6"
perfquery -e 5 10
echo "### 12XDDR link from switch 6 to switch 5"

perfquery -e 6 13

echo "MPI I/O over PVEFS"
vmstat 1 &
i=0
while [$i -It 5]; do
sleep 30
reset_counters
dump_counters
lusr/src/mvapich2-1.2rc21B/bin/mpiexec -n 6 \

/10-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t 256M -b 4G-i1l-w-0\

www.manharaa.com

56

pvfs2:/mnt/pvfs2/mpiio_pvfs2
dump_counters
echo "Run $i ended"
i="expr $i + 1
done
echo "MPI I/O over POSIX"
i=0
while [$i -It 5]; do
sleep 30
reset_counters
dump_counters
lusr/src/mvapich2-1.2rc2IB/bin/mpiexec -n 6 \
/10-tools/IOR-2.10.2/src/C/IOR -a MPIIO -t 256M -b 4G -il1-w -0\
/mnt/pvfs2/mpiio_posix
dump_counters
echo "Run $i ended"
i="expr $i + 1°

done

kill %1

www.manharaa.com

	2009
	Measurement of PVFS2 performance on InfiniBand
	Sudhindra Prasad Tirupati Nagaraj
	Recommended Citation

	Microsoft Word - $ASQsupp_F6E34008-1894-11DE-BB8F-7080F0E6BF1D.docx

